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Cryptographic motivations
Some cryptographic primitives, as block ciphers, have components
called S-boxes. Often an S-box is a function from Fn

2 to Fm
2 .

Many block ciphers are a series of “rounds”. Each round consists
of an S-box, a P-box and the XOR with a round key.

x → S(x) → P(S(x)) → P(S(x))⊕ k󰂊 󰂉󰂈 󰂋
oneround

→ ...

The S-box has to satisfy certain criteria, including in particular

◮ High nonlinearity provides resistance of the S-box to linear
cryptanalysis.

◮ Low differential uniformity provides resistance of the S-box to
differential cryptanalysis.

◮ Being invertible (it is easier to design the
encryption/decryption function).
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Notations

Let F : F2n → F2n be a Vectorial Boolean function.

Fλ(x) := Trn1 (λF (x)), λ ∈ F2n , are the components of F
(Trnm is the trace from F2n to F2m).

󰁰F (α,β) =
󰁞

x∈F2n
(−1)Tr

n
1 (αx+βF (x)), α,β ∈ F2n , are the Walsh

coefficients.

DaF (x) = F (x + a)− F (x) is the derivative of F in the direction a.



Definitions

Definition

Let F : F2n → F2n . Then F is said δ-differentially uniform iff the
equation

F (x + a)− F (x) = b

has at most δ solutions for all a ∈ F∗
2n and for all b ∈ F2n

F is called Almost Perfect Nonlinear (APN) iff δ = 2.
APN functions have the smallest possible differential uniformity.
Indeed, if x is a solution to F (x + a)− F (x) = b, so it is x + a.



Equivalently

Proposition

F : F2n → F2n is APN iff |{DaF (x) | x ∈ F2n}| = 2n−1 for all
a ∈ F∗

2n .

To verify if F is APN it is sufficient to check if
|{DaF (x) | x ∈ F2n}| = 2n−1 for all a ∕= 0 in any hyperplane H.



APN functions and their components

Proposition (Nyberg (1994), Berger, Canteaut, Charpin,
Laigle-Chapuy (2006))

Let F : F2n → F2n . Then, for any non-zero a ∈ F2n

󰁦

β∈F2n

󰁲DaF
2
(0,β) ≥ 22n+1.

Moreover F is APN iff
󰁞

β∈F2n
󰁲DaF

2
(0,β) = 22n+1.

F is a permutation iff
󰁞

β∈F∗
2n

󰁲DaF (0,β) = −2n for all non-zero

a ∈ F2n .

APN permutations are completely characterized by the derivatives
of their components.



f : F2n → F2 is partially-bent if there exist two subspace U and V
s.t. U ⊕ V = F2n and f|U is bent and f|V is affine. V is the set of
the linear structures of f .

Theorem (Nyberg 1994)

Let F : F2n → F2n , with all partially-bent components. If F is APN
then:

◮ If n is odd, then any component has one nonzero linear
structure. Different components have different nonzero linear
structure.

◮ If n is even, then at least 2
3(2

n − 1) components are bent. In
particular, F cannot be a permutation.



Theorem (Hou 2006)

Let F be a permutation over F2n , with n even. If F has more than
2n−2 − 1 quadratic components, then it is not APN.

Theorem (C.,Sala,Villa 2016)

Let F : F2n → F2n , with n even. If F is an APN permutation then
F has no partially-bent (quadratic) components.



f : F2n → F2 is plateaued if

󰁰f (α) =
󰁦

x∈F2n

(−1)Tr
n
1 (αx)+f (x) ∈ {0,±λ}.

Note: f partially-bent ⇒ plateaued.

Theorem (Berger, Canteaut, Charpin, Laigle-Chapuy 2006)

Let F : F2n → F2n , with n even. If F has all plateaued components
and F is APN, then at least 2

3(2
n − 1) are bent. In particular F

cannot be a permutation.

Remark

An APN permutation in even dimension can have plateaued
components.



Examples

x3 is APN over F2n , for all n.

◮ n odd 1-to-1

◮ n even 3-to-1

x2
n−2 is a permutation over F2n for all n.

◮ n odd APN

◮ n even 4-differentially uniform



APN monomials and permutations

Family Monomial Conditions Proved by

Gold x2
k+1 gcd(k , n)=1 Gold

Kasami x2
2k−2k+1 gcd(k , n) = 1 Kasami

Welch x2
k+3 n = 2k + 1 Dobbertin

Niho x2
k+2

t
2 −1, k even

x2
k+2

3t+1
2 −1, k odd

n = 2k + 1 Dobbertin

Inverse x2
n+2 n odd Nyberg

Dobbertin x2
4k+23k+22k+2k+1 n = 5k Dobbertin

Theorem (Dobbertin 1998)

APN power functions are permutations of F∗
2n if n is odd, and are

three-to-one if n is even.



Non existence results

Theorem (Hou 2006)

Let F ∈ F2n [x ] be a permutation polynomial, with n = 2m. Then:

◮ If n = 4 then F is not APN (computational fact).

◮ if F ∈ F2m [x ] then F is not APN.

In his paper, Hou conjectured that APN permutations did not exist
in even dimension.
This was a long-standing open problem until, in 2009, Dillon
presented an APN permutation in dimension 6.



APN functions and codes

Theorem (Carlet, Charpin, Zinoviev 1998)

Let F : F2n → F2n , with F (0) = 0. Let u be a primitive element of
F2n . Then F is APN if and only if the binary linear code CF

defined by the parity check matrix

HF =

󰀢
u u2 ... u2

n−1

F (u) F (u2) ... F (u2
n−1)

󰀣

has minimum distance 5.



APN functions and codes

Let Γf = {(x , f (x)) | x ∈ F2n}.

Two functions F ,G : F2n → F2n are CCZ-equivalent if and only if
ΓF and ΓG are affine-equivalent, i.e. let L an affine map on (F2n)

2,
LΓF = ΓG

or equivalently

if the extended codes with parity check matrices

󰁀

󰁂
1 1 ... 1
0 u ... u2

n−1

F (0) F (u) ... F (u2
n−1)

󰁁

󰁃 and

󰁀

󰁂
1 1 ... 1
0 u ... u2

n−1

G (0) G (u) ... G (u2
n−1)

󰁁

󰁃

are equivalent.



APN permutations and codes

Theorem (Browning, Dillon, Kibler, McQuistan 2007)

Let F : F2n → F2n be APN, with F (0) = 0. F is CCZ equivalent to
an APN permutation iff C⊥

F is a double simplex code (i.e.
C⊥
F = C1 ⊕ C2 with Ci a [2n − 1, n, 2n−1]-code).

If F is APN and C⊥
F = C1 ⊕ C2 = 〈f1(x)〉 ⊕ 〈f2(x)〉 is a double

simplex code
C1{
C2{

󰀢
... f1(x) ...
... f2(x) ...

󰀣󰀩
C⊥
F

where fi (x) = Li (x ,F (x)) (Li linear map from F2n
2 to Fn

2)

fi ’s are permutations of F2n , thus F is CCZ-equivalent to f2 ◦ f −1
1

which is an APN permutation.

So to find an APN permutation we want to write C⊥
F = C1 ⊕ C2



The first APN permutation in even dimension

At the Fq9 conference (Dublin 2009), Dillon presented the
construction of an APN permutation on F26 .

Consider the function

F (x) = ux3 + ux10 + u2x24 , u is a primitive element of F26

(F is equivalent to the Kim function κ(x) = x3 + x10 + ux24)
Denote L = F26 and K = F23

A codeword of C⊥
F is

(Tr(αx + βF (x))x∈L∗ , α,β ∈ L



Note that L = K ⊕ uK

Then we can write C⊥
F = C1 ⊕ C2 with

C1 = {Tr(αx + βF (x))x∈L∗ | (α,β) ∈ K × K}

and

C2 = {Tr(αx + βF (x))x∈L∗ | (α,β) ∈ uK × uK}.

For the Kim function, we have that Tr(αx + βF (x)) is balanced
for all α,β ∈ K β ∕= 0 and the same holds for α,β ∈ uK .

Thus C1 and C2 are simplex codes.



Theorem (Browning, Dillon, McQuistan, Wolfe 2009)

κ(x) is CCZ-equivalent to an APN permutation.
The code C⊥

κ contains 222 simplex subcodes, 32 of which split
into two sets of 16, with any pair from different sets being
”disjoint”. The 256 corresponding inverse pairs of APN
permutations are, of course, all CCZ-equivalent to κ.



APN permutations and Walsh spectrum

The set of Walsh zeroes of F is

WZF = {(α,β) : 󰁰F (α,β) = 0} ∪ {(0, 0)}

APN permutations and Walsh spectrum

An APN function F on F2n is CCZ-equivalent to a permutation iff
the Walsh zeroes of F contains two subspaces of dimension n
intersecting only trivially.

Indeed, there exists a linear permutation, mapping F2n × {0} and
{0}× F2n to these two spaces, respectively. This leads to L such
that the resulting CCZ-equivalent function is a permutation.



Properties of κ

◮ Walsh zeroes of κ has more structure with respect to some
subspaces, i.e.,

{(u1x , v1y) : x , y ∈ F23}, {(u2x , v2y) : x , y ∈ F23} ⊆ WZF

for some u1, u2, v1, v2 ∈ {x ∈ F26 : Tr
6
3 (x) = 1} ∪ {1}.

◮ The function κ satisfies the subspace property, which is
defined as

F (ax) = a2
k+1F (x), ∀a ∈ F

2
n
2

(1)

for some integer k .

◮ According to Browning-Dillon-McQuistan-Wolfe this explained
some of the simplicity of why κ is equivalent to a permutation,

󰁰F (α,β) = 󰁰F (αy ,βy2k+1), y ∈ F
2
n
2



APN functions of κ-form

Let n = 2m.

Remark

F =
󰁞

d adx
d satisfies the subspace property iff

d ≡ 2k + 1 mod 2m − 1.

In particular, F quadratic satisfies the subspace property if
d in {2k + 1, 2k + 2m, 2k+m + 2m, 2k+m + 1}.

Functions with κ-form:

F (x) = x2
k+1 + Ax2

k+m+2m + Bx2
k+m+1 + Cx2

k+2m



A family with κ-form

Theorem (Göloǧlu 2015)

Let n = 2m. Fk(x) = x2
k+m+2m + x2

k+2m + x2
k+m+1.Then, Fk is

APN iff m is even and gcd(k , n) = 1.

However, Göloǧlu did not find any Fk which is equivalent to a
permutation for n = 8 and n = 12



Theorem (Göloǧlu, Langevin 2015)

Gold functions are not equivalent to any permutation on even
extensions.

Theorem (Budaghyan, Helleseth, Li, Sun 2016)

Let n = 2m = 4t. Fk is affine equivalent to the Gold function
x2

m−k+1.

⇓

Fk is not equivalent to a permutation.



APN functions of κ-form

Recently Dáša Krasnayová, in her Master’s thesis ”Constructions of
APN permutations”, studied necessary and sufficient conditions for

F (x) = x3 + Ax3·2
m
+ Bx2

m+1+1 + Cx2+2m

with A,B ,C ∈ F2m to be APN or equivalent to a permutation
(n = 2m).



Theorem (Krasnayová 2016)

Let n = 2m, ∆ = 1+ A+ B + C .Then F is APN iff A,B ,C satisfy

m odd m even
∆ ∕= 0

Trm1
󰀎
1+A
∆

󰀏
= 1 Trm1

󰀎
1+A
∆

󰀏
= 0

1 + B + A2 + AC ∕= 0 −
Trm1

󰀞
∆2

1+B+A2+AC

󰀟
= 1 −

if Trm1 (B+AC
∆2 ) = 1 then A2B2 + C 2 ∕= ∆2(AC + b)

Trm1

󰀞
∆(T∆+B+C)(T 2∆2+AC+B)

(T∆2+AB+C)2

󰀟
= 1,

for every T s.t. Trm1 (T ) = 1, ∆T + 1 + A ∕= 0,
(T∆2 + AB + C ) ∕= 0 and T 2∆2 + AC + B ∕= 0



To check if F (x) = x3 +Ax3·2
m
+Bx2

m+1+1 + Cx2+2m is equivalent
to a permutation, Krasnayová determined necessary and sufficient
conditions to have u, v ∈ T1 = {x | Trnm(x) = 1} such that

󰁦

α∈uF2m

󰁦

β∈vF2m

󰁰F 2(α,β) = 24m.

This is equivalent to

{(uα, vβ) | α,β ∈ F2m} ⊂ WZF



Krasnayová applied her results for n = 6 and n = 10 (when m odd
it is more easy to check the conditions to be equivalent to a
permutation)

◮ n = 6: 112 APN functions, 84 of which equivalent to a
permutation.
(All these functions are CCZ-equivalent to κ)

◮ n = 10: 496 APN functions,
no one is equivalent to a permutation.



Some computational facts

◮ Let n = 8, if
F (x) = x2

k+1 + Ax2
k+m+2m + Bx2

k+m+1 + Cx2
k+2m is APN

then it is equivalent to a Gold function, for all gcd(k , n) = 1
and A,B ,C ∈ F28 .

◮ Let n = 10, 12, 14. If
F (x) = x2

k+1 + Ax2
k+m+2m + Bx2

k+m+1 + Cx2
k+2m is APN

then it is equivalent to a Gold function, for all gcd(k , n) = 1
and A,B ,C ∈ F2m

Remark

When m is even we have two classes of function in κ-form: x2
k+1

and x2
k+1 + x2

k+m+1 + x2
k+2m (∼ x2

m−k+1).

When m is odd we have one class of function in κ-form: x2
k+1.



Theorem (Göloǧlu, Krasnayová, Lisoněk 2017)

Let n = 2m. Let F (x) = x3 + Ax3·2
m
+ Bx2·2

m+1 + Cx2+2m , with
A,B ,C ∈ F2m . If F is APN then one of the following cases occurs:

◮ AC + B + B2 + C 2 = 0 and F is equivalent to x3.

◮ AC +B +A2 +1 = 0, m even and F is equivalent to x2
m−1+1.

◮ m = 3 and F is equivalent to κ.



An approach with hyperelliptic curves1

Consider the Kim function F (x) = ux3 + ux10 + u2x24, we have

Tr(αx + βF (x)) is balanced

⇕

Cα,β : y2 + y = αx + βF (x) is s.t. #Cα,β = 26 + 1

⇕

C ′
α,β : y2+y = (βu)32x5+(βu+(βu2)8)x3+α2x2 is s.t. #C ′

α,β = 26+1

1Petr Lisoněk,“APN permutations and double simplex codes”, Mathematics
of Communications: Sequences, Codes and Designs 2015.



The number of points on curves C : y2 + y =
󰁞

i cix
2i+1 can be

analyzed using the method given in
G. van der Geer, M. van der Vlugt: Reed-Muller codes and
supersingular curves. I. Compositio Math. 84 (1992), no. 3,
333-367.



Let
C : y2 + y =

󰁦

i

cix
2i+1

Denote Q(x) = Tr(
󰁞

i cix
2i+1), then

B(u, v) = Q(u + v)− Q(u)− Q(v)

is a symmetric bilinear form;
Let

W := {w ∈ F2n | B(w , v) = 0, ∀v ∈ F2n}.

Theorem (van der Geer, van der Vlugt 1992)

W is the set of roots in F2n of a polynomial
XE−

Q E+
Q ∈ F2n [c0, ..., ch][X ]. Moreover, #C = 2n + 1 iff Q does

not completely vanish on W .



Lisoněk noted that for the case of the Kim function we have
(K = F23)

◮ E−
Q and E+

Q are free of α (this happens for all curves of this
type).

◮ Consider β ∈ K . Then putting X = β2Z , we obtain
E−
Q = β · G , with G free of b. There exists z0 such that

E−
Q (β2z0) = 0 and Q(β2z0) = 1 for all β ∈ K .

◮ Similar argument for β ∈ uK .

So, to verify if #C ′
α,β = 26 + 1 for all (α,β) ∈ K × K and

(α,β) ∈ uK × uK ((α,β) ∕= (0, 0)), we need solving just two pairs
of equations.



Lisoněk proposed to start with a polynomial F (x) which is sum of
pairs having form

cix
2ki+m(2i+1) + dix

2ki (2i+1).

There are some compatibility conditions on the different ki ’s.

Lisoněk performed some computational searches

◮ in n = 6, he found APN functions equivalent to a permutation
(all CCZ-eq. to κ)

◮ in n = 10, he found APN functions but not equivalent to a
permutation.



Conclusions

Problem

Find an infinite family of APN functions which includes the Kim
function (satisfying subspace property).

Problem

Show that the existing families of APN functions are not
equivalent to permutations.

Still The Big APN Problem

Are there APN permutations on F22m for m > 3?



Thanks for your attention!


